當前位置:首頁 » 五金照明 » 照明散熱冷負荷系數怎麼查
擴展閱讀
邁諾詩凈水器濾芯怎麼換 2021-03-16 21:54:39
家裝強化地板 2021-03-16 21:51:45

照明散熱冷負荷系數怎麼查

發布時間: 2021-01-28 10:02:37

① 冷負荷和製冷量是一回事嗎

不是一回事。冷負荷抄是建築物為了保持襲濕熱平衡,所需要的冷量。製冷量是製冷設備所提供的冷量。不是一個概率,製冷量需要大於等於建築物冷負荷。室內冷負荷主要有以下幾方面的內容:照明散熱、人體散熱、室內用電設備散熱、透過玻璃窗進入室內日照量、經玻璃窗的溫差傳熱以及維護結構不穩定傳熱。冷凝管的選擇有一張表格,在什麼范圍內選管徑,這個你可以查下規范。

② 請教:照明設計負荷該如何確定,用什麼方法

有負荷計算公式,照明設備冷負荷Q(單位:W)=1000NC' N為照明燈具的功率,單位是內KW,C'為照明散熱冷負荷系數,可查設計手容冊,如果是熒光燈的計算 還有再乘以n1*n2, n1為鎮流器消耗功率系數,如在房間內取1.2,在頂棚內取1,n2為燈罩隔熱系數,查手冊。

③ 求空調冷熱負荷計算公式

1、冷負荷計算
(一)外牆的冷負荷計算
通過牆體、天棚的得熱量形成的冷負荷,可按下式計算:
CLQτ=KF⊿tτ-ε W
式中 K——圍護結構傳熱系數,W/m2•K;
F——牆體的面積,m2;
β——衰減系數;
ν——圍護結構外側綜合溫度的波幅與內表面溫度波幅的比值為該牆體的傳熱衰減度;
τ——計算時間,h;
ε——圍護結構表面受到周期為24小時諧性溫度波作用,溫度波傳到內表面的時間延遲,h;
τ-ε——溫度波的作用時間,即溫度波作用於圍護結構內表面的時間,h;
⊿tε-τ——作用時刻下,圍護結構的冷負荷計算溫差,簡稱負荷溫差。
(二)窗戶的冷負荷計算
通過窗戶進入室內的得熱量有瞬變傳熱得熱和日射得熱量兩部分,日射得熱量又分成兩部分:直接透射到室內的太陽輻射熱qt和被玻璃吸收的太陽輻射熱傳向室內的熱量qα。
(a)窗戶瞬變傳熱得形成的冷負荷
本次工程窗戶為一個框二層3.0mm厚玻璃,主要計算參數K=3.5 W/m2•K。工程中用下式計算:
CLQτ=KF⊿tτ W
式中 K——窗戶傳熱系數,W/m2•K;
F——窗戶的面積,m2;
⊿tτ——計算時刻的負荷溫差,℃。
(b)窗戶日射得熱形成的冷負荷
日射得熱取決於很多因素,從太陽輻射方面來說,輻射強度、入射角均依緯度、月份、日期、時間的不同而不同。從窗戶本身來說,它隨玻璃的光學性能,是否有遮陽裝置以及窗戶結構(鋼、木窗,單、雙層玻璃)而異。此外,還與內外放熱系數有關。工程中用下式計算:
CLQj•τ= xg xd Cs Cn Jj•τ W
式中 xg——窗戶的有效面積系數;
xd——地點修正系數;
Jj•τ——計算時刻時,透過單位窗口面積的太陽總輻射熱形成的冷負荷,簡稱負荷,W/m2;
Cs——窗玻璃的遮擋系數;
Cn——窗內遮陽設施的遮陽系數。
(三)外門的冷負荷計算
當房間送風兩大於回風量而保持相當的正壓時,如形成正壓的風量大於無正壓時滲入室內的空氣量,則可不計算由於門、窗縫隙滲入空氣的熱、濕量。如正壓風量較小,則應計算一部分滲入空氣帶來的熱、濕量或提高正壓風量的數值。
(a)外門瞬變傳熱得形成的冷負荷
計算方法同窗戶瞬變傳熱得形成的冷負荷。
(b)外門日射得熱形成的冷負荷
計算方法同窗戶日射得熱形成的冷負荷,但一層大門一般有遮陽。
(c)熱風侵入形成的冷負荷
由於外門開啟而滲入的空氣量G按下式計算:
G=nVmγw kg/h
式中 Vm——外門開啟一次(包括出入各一次)的空氣滲入量(m2/人次•h),按下表3—9選用;
n——每小時的人流量(人次/h);
γw——室外空氣比重(kg/m2)。
表3—9 Vm值(m2/人次•h)
每小時通過
的人數 普通門 帶門斗的門 轉門
單扇 一扇以上 單扇 一扇以上 單扇 一扇以上
100 3.0 4.75 2.50 3.50 0.80 1.00
100~700 3.0 4.75 2.50 3.50 0.70 0.90
700~1400 3.0 4.75 2.25 3.50 0.50 0.60
1400~2100 2.75 4.0 2.25 3.25 0.30 0.30
因室外空氣進入室內而獲得的熱量,可按下式計算:
Q=G•0.24(tw-tn) kcal/h
(四)地面的冷負荷計算
舒適性空氣調節區,夏季可不計算通過地面傳熱形成的冷負荷。工藝性空氣調節區,有外牆時,宜計算距外牆2m范圍內的地面傳熱形成的冷負荷,地面冷計算採用地帶法(同採暖)。
(五)內牆、內窗、樓板、地面的冷負荷
內牆、內窗、樓板等圍護結構,當鄰室為非空氣調節房間時,其室溫基數大於3℃時,鄰室溫度採用平均溫度,其冷負荷按下式計算:
Q=KF(twp+⊿tls-tn) W
式中 Q——內牆或樓板的冷負荷,W;
K——內牆或樓板的傳熱系數,W/m2•℃;
F——內牆或樓板的傳熱面積,m2;
tls——鄰室計算平均溫度與夏季空氣調節室外計算日平均溫度的差值,℃。
內牆、內窗、樓板等其鄰室為空氣調節房間時,其室溫基數小於3℃時,不計算。
(六)室內得熱冷負荷計算
(a)電子設備的冷負荷
電子設備發熱量按下式計算:
Q=1000n1n2n3N W
式中 Q——電子設備散熱量,W;
N——電子設備的安裝功率,kW;
n1——安裝系數。電子設備設計軸功率與安裝功率之比,一般可取0.7~0.9;
n2——負荷功率。電子設備小時的平均實耗功率與設計軸功率之比,根據設備運轉的實際情況而定。
n3——同時使用系數。房間內電子設備同時使用的安裝功率與總功率之比。根據工藝過程的設備使用情況而定。
對於電子計算機,國外產品一般都給出設備發熱,可按其給出的數字計算。本次設計每台計算機Qs=150W。
(b)照明設備
照明設備散熱量屬於穩定得熱,一般得熱量是不隨時間變化的。
根據照明燈具的類型和安裝方式的不同,其得熱量為:
白熾燈 Q=1000N W
熒光燈 Q=1000 n1n2N W
式中 N——照明燈具所需功率,kW;
n1——鎮流器消耗功率系數,當明裝熒光燈的鎮流器裝在空調房間內時,取n1=1.2;當暗裝熒光燈鎮流器設在頂棚內時,可取n1=1.0;
n2——燈罩隔熱系數,當熒光燈罩上部有小孔(下部為玻璃板),可利用自然通風散熱與熒光燈頂棚內時,取n2=0.5~0.6;而熒光燈罩無通風孔者,則視頂棚內通風情況,n2=0.6~0.8。
(c)人體散熱
人體散熱與性別、年齡、衣著、勞動強度及周圍環境條件等多種因素有關。人體散發的潛熱量和對流熱直接形成瞬時冷負荷,而輻射散發的熱量將會形成滯後的冷負荷。實際計算中,人體散熱可以以成年男子為基礎,成以考慮了各類人員組成比例的系數,稱群集系數。對於不同功能的建築物中的各類人員(成年男子、女子、兒童等)不同的組成進行修正,下表給出了一些建築物中的群集系數,作為參考。於是人體散熱量為:
Q=qnn′ W
式中 q——不同室溫和勞動性質時成年男子散熱量,W;
n——室內全部人數;
n′——群集系數。
表3—11 某些空調建築物內的群集系數
工作場所 影劇院 百貨商店 旅店 體育館 圖書閱覽室 工廠輕勞動
群集系數 0.89 0.89 0.93 0.92 0.96 0.90
設備、照明和人體散熱得熱形成的冷負荷,在工程上可用下式簡化計算:
CLQτ=QJXε-T W
式中 Q——設備、照明和人體的得熱,W;
T——設備投入使用時刻或開燈時刻或人員進入房間時刻,h;
τ-T——從設備投入使用時刻或開燈時刻或人員進入房間時刻到計算時間的時間,h;
JXε-T(JEε-T、JLε-T、JPε-T)——τ-T時間的設備負荷強度系數,照明負荷強度系數、人體強度負荷系數。
表3—12 設備器具散熱的負荷系數JEτ-T
房間類 型 連續使用總時數 投入使用後的小時數τ-T
3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 6
8
12
16 0.77 0.81 0.84 0.86 0.32 0.18 0.15 0.12 0.10 0.09 0.07 0.06 0.06 0.05
0.78 0.81 0.84 0.86 0.88 0.90 0.36 0.21 0.17 0.14 0.12 0.10 0.09 0.08
0.80 0.83 0.86 0.88 0.89 0.91 0.92 0.93 0.94 0.95 0.40 0.25 0.20 0.17
0.83 0.86 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98
表3—13 照明散熱的負荷系數JLτ-T
房間類 型 連續使用總時數 投入使用後的小時數τ-T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 3
4
6
8
12
16 0.42 0.60 0.65 0.29 0.14 0.12 0.11 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03
0.42 0.61 0.66 0.70 0.33 0.18 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.05
0.43 0.61 0.67 0.71 0.74 0.78 0.39 0.24 0.20 0.18 0.16 0.14 0.12 0.10 0.09 0.08
0.45 0.63 0.68 0.72 0.75 0.78 0.81 0.83 0.45 0.28 0.24 0.21 0.19 0.16 0.14 0.12
0.49 0.66 0.71 0.74 0.77 0.80 0.83 0.85 0.87 0.89 0.90 0.91 0.51 0.34 0.29 0.26
0.55 0.72 0.76 0.79 0.81 0.84 0.86 0.88 0.89 0.91 0.92 0.93 0.94 0.95 0.95 0.96
表3—14 人體顯熱散熱的負荷系數JPτ-T
房間類 型 連續使用總時數 投入使用後的小時數τ-T
3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 6
8
12
16 0.73 0.77 0.80 0.83 0.34 0.20 0.17 0.14 0.12 0.11 0.09 0.08 0.07 0.06
0.74 0.78 0.81 0.83 0.85 0.87 0.38 0.23 0.20 0.17 0.15 0.13 0.11 0.10
0.76 0.80 0.82 0.85 0.87 0.88 0.90 0.91 0.92 0.93 0.43 0.28 0.24 0.20
0.80 0.83 0.85 0.87 0.89 0.90 0.92 0.93 0.94 0.95 0.95 0.96 0.96 0.97
(d)食物散熱量形成冷負荷
計算餐廳負荷時,食物散熱量形成的顯熱冷負荷,可按每位就餐人員9W考慮。計算過程如下:
已確定餐廳人數為200人。則Q=9×200=1800W
(八)濕負荷計算
(a)人體散濕量
人體散濕量應同人體散熱量一樣考慮。計算過程如下:
查資料得,成年男子散熱散濕量為:顯熱61W/人,潛熱73W/人,109g/h•人;房間人數為20人。
Q=qnn′=109×20×0.77=0.00047kg/s
(b)水面散濕量
W=β(Pq•b-Pq)F kg/s
式中 Pq•b——相應於水表面溫度下的飽和空氣的水蒸汽分壓力,Pa;
Pq——空氣中水蒸汽分壓力Pa;
F——蒸發水槽表面積,m2;
β——蒸發系數,kg/(N•s),β按下式確定:
β=(α+0.00363v)10-5;
B——標准大氣壓力,其值為101325Pa;
B′——當地實際大氣壓力,Pa;
α——周圍空氣溫度為15~30℃,不同水溫下的擴散系數,kg/(N•s);
v——水面上周圍空氣流速,m/s。
表3—11 不同水溫下的擴散系數α
水溫(℃) <30 40 50 60 70 80 90 100
α kg/(N•s) 0.0043 0.0058 0.0069 0.0077 0.0088 0.0096 0.0106 0.0125
(c)食品的散濕量
餐廳的食品的散濕量可按就餐總人數每人10g/h考慮。
以207餐廳為例,計算過程如下:
已確定餐廳人數為200人。則Q=10×200=2000g/h=0.00056kg/s
熱負荷的計算和供熱基本相同 只是採用了平均溫度的計算方法

④ 什麼是 冷負荷系數

1、又稱「製冷負荷」。為使室內溫濕度維持在規定水平,空調設備版在單位時間內必須權從室內排出的熱量。它與得熱量有時相等,有時則不等。建築物結構的蓄熱特性決定了冷負荷與得熱量之間的關系。瞬時得熱中潛熱得熱和顯熱得熱的對流成分立即構成瞬時冷負荷,而顯熱得熱中的輻射成風則不能立即構成冷負荷,輻射熱被室內的物體吸收和儲存後,緩慢散發給室內空氣。 2、空調負荷為保持建築物的熱濕環境,在某一時刻需向房間供應的冷量稱為冷負荷。相反,為了補償房間失熱量需向房間供應的熱量稱為熱負荷。 3、室內冷負荷主要有以下幾方面的內容:照明散熱、人體散熱、室內用電設備散熱、透過玻璃窗進入室內日照量、經玻璃窗的溫差傳熱以及維護結構不穩定傳熱。 追問: ??是系數··

⑤ 照明冷負荷系數表怎麼看啊看不懂 還有人體顯熱散熱冷負荷系數表也怎看啊

lkuiouoiu;uiluiohih

⑥ "冷負荷"是什麼意思

冷負荷的定義是為保持建築物的熱濕環境和所要求的室內溫度,必須由空調系統從房間帶走的熱量叫空調房間冷負荷,或在某一時刻需向房間供應的冷量稱為冷負荷,冷負荷包括顯熱量和潛熱量兩部分。相反,如果空調系統需要向室內供熱,以補償房間損失熱量而向房間供應的熱量稱為熱負荷。

  • 中文名 冷負荷

  • 外文名 cooling load

  • 別名 製冷負荷

  • 目的 使室內溫濕度維持在規定水平

  • 決定因素 建築物結構的蓄熱特性

  • 包括內容 照明散熱、人體散熱等散熱途徑

⑦ 跪求設計圍護結構中央空調冷負荷計算的書下載地址

1、冷負荷計算
(一)外牆的冷負荷計算
通過牆體、天棚的得熱量形成的冷負荷,可按下式計算:
CLQτ=KF⊿tτ-ε W
式中 K——圍護結構傳熱系數,W/m2•K;
F——牆體的面積,m2;
β——衰減系數;
ν——圍護結構外側綜合溫度的波幅與內表面溫度波幅的比值為該牆體的傳熱衰減度;
τ——計算時間,h;
ε——圍護結構表面受到周期為24小時諧性溫度波作用,溫度波傳到內表面的時間延遲,h;
τ-ε——溫度波的作用時間,即溫度波作用於圍護結構內表面的時間,h;
⊿tε-τ——作用時刻下,圍護結構的冷負荷計算溫差,簡稱負荷溫差。
(二)窗戶的冷負荷計算
通過窗戶進入室內的得熱量有瞬變傳熱得熱和日射得熱量兩部分,日射得熱量又分成兩部分:直接透射到室內的太陽輻射熱qt和被玻璃吸收的太陽輻射熱傳向室內的熱量qα。
(a)窗戶瞬變傳熱得形成的冷負荷
本次工程窗戶為一個框二層3.0mm厚玻璃,主要計算參數K=3.5 W/m2•K。工程中用下式計算:
CLQτ=KF⊿tτ W
式中 K——窗戶傳熱系數,W/m2•K;
F——窗戶的面積,m2;
⊿tτ——計算時刻的負荷溫差,℃。
(b)窗戶日射得熱形成的冷負荷
日射得熱取決於很多因素,從太陽輻射方面來說,輻射強度、入射角均依緯度、月份、日期、時間的不同而不同。從窗戶本身來說,它隨玻璃的光學性能,是否有遮陽裝置以及窗戶結構(鋼、木窗,單、雙層玻璃)而異。此外,還與內外放熱系數有關。工程中用下式計算:
CLQj•τ= xg xd Cs Cn Jj•τ W
式中 xg——窗戶的有效面積系數;
xd——地點修正系數;
Jj•τ——計算時刻時,透過單位窗口面積的太陽總輻射熱形成的冷負荷,簡稱負荷,W/m2;
Cs——窗玻璃的遮擋系數;
Cn——窗內遮陽設施的遮陽系數。
(三)外門的冷負荷計算
當房間送風兩大於回風量而保持相當的正壓時,如形成正壓的風量大於無正壓時滲入室內的空氣量,則可不計算由於門、窗縫隙滲入空氣的熱、濕量。如正壓風量較小,則應計算一部分滲入空氣帶來的熱、濕量或提高正壓風量的數值。
(a)外門瞬變傳熱得形成的冷負荷
計算方法同窗戶瞬變傳熱得形成的冷負荷。
(b)外門日射得熱形成的冷負荷
計算方法同窗戶日射得熱形成的冷負荷,但一層大門一般有遮陽。
(c)熱風侵入形成的冷負荷
由於外門開啟而滲入的空氣量G按下式計算:
G=nVmγw kg/h
式中 Vm——外門開啟一次(包括出入各一次)的空氣滲入量(m2/人次•h),按下表3—9選用;
n——每小時的人流量(人次/h);
γw——室外空氣比重(kg/m2)。
表3—9 Vm值(m2/人次•h)
每小時通過
的人數 普通門 帶門斗的門 轉門
單扇 一扇以上 單扇 一扇以上 單扇 一扇以上
100 3.0 4.75 2.50 3.50 0.80 1.00
100~700 3.0 4.75 2.50 3.50 0.70 0.90
700~1400 3.0 4.75 2.25 3.50 0.50 0.60
1400~2100 2.75 4.0 2.25 3.25 0.30 0.30
因室外空氣進入室內而獲得的熱量,可按下式計算:
Q=G•0.24(tw-tn) kcal/h
(四)地面的冷負荷計算
舒適性空氣調節區,夏季可不計算通過地面傳熱形成的冷負荷。工藝性空氣調節區,有外牆時,宜計算距外牆2m范圍內的地面傳熱形成的冷負荷,地面冷計算採用地帶法(同採暖)。
(五)內牆、內窗、樓板、地面的冷負荷
內牆、內窗、樓板等圍護結構,當鄰室為非空氣調節房間時,其室溫基數大於3℃時,鄰室溫度採用平均溫度,其冷負荷按下式計算:
Q=KF(twp+⊿tls-tn) W
式中 Q——內牆或樓板的冷負荷,W;
K——內牆或樓板的傳熱系數,W/m2•℃;
F——內牆或樓板的傳熱面積,m2;
tls——鄰室計算平均溫度與夏季空氣調節室外計算日平均溫度的差值,℃。
內牆、內窗、樓板等其鄰室為空氣調節房間時,其室溫基數小於3℃時,不計算。
(六)室內得熱冷負荷計算
(a)電子設備的冷負荷
電子設備發熱量按下式計算:
Q=1000n1n2n3N W
式中 Q——電子設備散熱量,W;
N——電子設備的安裝功率,kW;
n1——安裝系數。電子設備設計軸功率與安裝功率之比,一般可取0.7~0.9;
n2——負荷功率。電子設備小時的平均實耗功率與設計軸功率之比,根據設備運轉的實際情況而定。
n3——同時使用系數。房間內電子設備同時使用的安裝功率與總功率之比。根據工藝過程的設備使用情況而定。
對於電子計算機,國外產品一般都給出設備發熱,可按其給出的數字計算。本次設計每台計算機Qs=150W。
(b)照明設備
照明設備散熱量屬於穩定得熱,一般得熱量是不隨時間變化的。
根據照明燈具的類型和安裝方式的不同,其得熱量為:
白熾燈 Q=1000N W
熒光燈 Q=1000 n1n2N W
式中 N——照明燈具所需功率,kW;
n1——鎮流器消耗功率系數,當明裝熒光燈的鎮流器裝在空調房間內時,取n1=1.2;當暗裝熒光燈鎮流器設在頂棚內時,可取n1=1.0;
n2——燈罩隔熱系數,當熒光燈罩上部有小孔(下部為玻璃板),可利用自然通風散熱與熒光燈頂棚內時,取n2=0.5~0.6;而熒光燈罩無通風孔者,則視頂棚內通風情況,n2=0.6~0.8。
(c)人體散熱
人體散熱與性別、年齡、衣著、勞動強度及周圍環境條件等多種因素有關。人體散發的潛熱量和對流熱直接形成瞬時冷負荷,而輻射散發的熱量將會形成滯後的冷負荷。實際計算中,人體散熱可以以成年男子為基礎,成以考慮了各類人員組成比例的系數,稱群集系數。對於不同功能的建築物中的各類人員(成年男子、女子、兒童等)不同的組成進行修正,下表給出了一些建築物中的群集系數,作為參考。於是人體散熱量為:
Q=qnn′ W
式中 q——不同室溫和勞動性質時成年男子散熱量,W;
n——室內全部人數;
n′——群集系數。
表3—11 某些空調建築物內的群集系數
工作場所 影劇院 百貨商店 旅店 體育館 圖書閱覽室 工廠輕勞動
群集系數 0.89 0.89 0.93 0.92 0.96 0.90
設備、照明和人體散熱得熱形成的冷負荷,在工程上可用下式簡化計算:
CLQτ=QJXε-T W
式中 Q——設備、照明和人體的得熱,W;
T——設備投入使用時刻或開燈時刻或人員進入房間時刻,h;
τ-T——從設備投入使用時刻或開燈時刻或人員進入房間時刻到計算時間的時間,h;
JXε-T(JEε-T、JLε-T、JPε-T)——τ-T時間的設備負荷強度系數,照明負荷強度系數、人體強度負荷系數。
表3—12 設備器具散熱的負荷系數JEτ-T
房間類 型 連續使用總時數 投入使用後的小時數τ-T
3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 6
8
12
16 0.77 0.81 0.84 0.86 0.32 0.18 0.15 0.12 0.10 0.09 0.07 0.06 0.06 0.05
0.78 0.81 0.84 0.86 0.88 0.90 0.36 0.21 0.17 0.14 0.12 0.10 0.09 0.08
0.80 0.83 0.86 0.88 0.89 0.91 0.92 0.93 0.94 0.95 0.40 0.25 0.20 0.17
0.83 0.86 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98
表3—13 照明散熱的負荷系數JLτ-T
房間類 型 連續使用總時數 投入使用後的小時數τ-T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 3
4
6
8
12
16 0.42 0.60 0.65 0.29 0.14 0.12 0.11 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03
0.42 0.61 0.66 0.70 0.33 0.18 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.05
0.43 0.61 0.67 0.71 0.74 0.78 0.39 0.24 0.20 0.18 0.16 0.14 0.12 0.10 0.09 0.08
0.45 0.63 0.68 0.72 0.75 0.78 0.81 0.83 0.45 0.28 0.24 0.21 0.19 0.16 0.14 0.12
0.49 0.66 0.71 0.74 0.77 0.80 0.83 0.85 0.87 0.89 0.90 0.91 0.51 0.34 0.29 0.26
0.55 0.72 0.76 0.79 0.81 0.84 0.86 0.88 0.89 0.91 0.92 0.93 0.94 0.95 0.95 0.96
表3—14 人體顯熱散熱的負荷系數JPτ-T
房間類 型 連續使用總時數 投入使用後的小時數τ-T
3 4 5 6 7 8 9 10 11 12 13 14 15 16

重 6
8
12
16 0.73 0.77 0.80 0.83 0.34 0.20 0.17 0.14 0.12 0.11 0.09 0.08 0.07 0.06
0.74 0.78 0.81 0.83 0.85 0.87 0.38 0.23 0.20 0.17 0.15 0.13 0.11 0.10
0.76 0.80 0.82 0.85 0.87 0.88 0.90 0.91 0.92 0.93 0.43 0.28 0.24 0.20
0.80 0.83 0.85 0.87 0.89 0.90 0.92 0.93 0.94 0.95 0.95 0.96 0.96 0.97
(d)食物散熱量形成冷負荷
計算餐廳負荷時,食物散熱量形成的顯熱冷負荷,可按每位就餐人員9W考慮。計算過程如下:
已確定餐廳人數為200人。則Q=9×200=1800W
(八)濕負荷計算
(a)人體散濕量
人體散濕量應同人體散熱量一樣考慮。計算過程如下:
查資料得,成年男子散熱散濕量為:顯熱61W/人,潛熱73W/人,109g/h•人;房間人數為20人。
Q=qnn′=109×20×0.77=0.00047kg/s
(b)水面散濕量
W=β(Pq•b-Pq)F kg/s
式中 Pq•b——相應於水表面溫度下的飽和空氣的水蒸汽分壓力,Pa;
Pq——空氣中水蒸汽分壓力Pa;
F——蒸發水槽表面積,m2;
β——蒸發系數,kg/(N•s),β按下式確定:
β=(α+0.00363v)10-5;
B——標准大氣壓力,其值為101325Pa;
B′——當地實際大氣壓力,Pa;
α——周圍空氣溫度為15~30℃,不同水溫下的擴散系數,kg/(N•s);
v——水面上周圍空氣流速,m/s。
表3—11 不同水溫下的擴散系數α
水溫(℃) <30 40 50 60 70 80 90 100
α kg/(N•s) 0.0043 0.0058 0.0069 0.0077 0.0088 0.0096 0.0106 0.0125
(c)食品的散濕量
餐廳的食品的散濕量可按就餐總人數每人10g/h考慮。
以207餐廳為例,計算過程如下:
已確定餐廳人數為200人。則Q=10×200=2000g/h=0.00056kg/s
熱負荷的計算和供熱基本相同 只是採用了平均溫度的計算方法

⑧ 冷負荷的冷負荷計算

外牆的冷負荷計算
通過牆體、天棚的得熱量形成的冷負荷,可按下式計算:
CLQτ=KF⊿tτ-ε W
式中 K——圍護結構傳熱系數,W/m2·K;
F——牆體的面積,m2;
β——衰減系數;
ν——圍護結構外側綜合溫度的波幅與內表面溫度波幅的比值為該牆體的傳熱衰減度;
τ——計算時間,h;
ε——圍護結構表面受到周期為24小時諧性溫度波作用,溫度波傳到內表面的時間延遲,h;
τ-ε——溫度波的作用時間,即溫度波作用於圍護結構內表面的時間,h;
⊿tε-τ——作用時刻下,圍護結構的冷負荷計算溫差,簡稱負荷溫差。
窗戶的冷負荷計算
通過窗戶進入室內的得熱量有瞬變傳熱得熱和日射得熱量兩部分,日射得熱量又分成兩部分:直接透射到室內的太陽輻射熱qt和被玻璃吸收的太陽輻射熱傳向室內的熱量qα。
(a)窗戶瞬變傳熱得形成的冷負荷
本次工程窗戶為一個框二層3.0mm厚玻璃,主要計算參數K=3.5 W/m2·K。工程中用下式計算:
CLQτ=KF⊿tτ W
式中 K——窗戶傳熱系數,W/m2·K;
F——窗戶的面積,m2;
⊿tτ——計算時刻的負荷溫差,℃。
(b)窗戶日射得熱形成的冷負荷
日射得熱取決於很多因素,從太陽輻射方面來說,輻射強度、入射角均依緯度、月份、日期、時間的不同而不同。從窗戶本身來說,它隨玻璃的光學性能,是否有遮陽裝置以及窗戶結構(鋼、木窗,單、雙層玻璃)而異。此外,還與內外放熱系數有關。工程中用下式計算:
CLQj·τ= xg xd Cs Cn Jj·τ W
式中 xg——窗戶的有效面積系數;
xd——地點修正系數;
Jj·τ——計算時刻時,透過單位窗口面積的太陽總輻射熱形成的冷負荷,簡稱負荷,W/m2;
Cs——窗玻璃的遮擋系數;
Cn——窗內遮陽設施的遮陽系數。
外門的冷負荷計算
當房間送風量大於回風量而保持相當的正壓時,如形成正壓的風量大於無正壓時滲入室內的空氣量,則可不計算由於門、窗縫隙滲入空氣的熱、濕量。如正壓風量較小,則應計算一部分滲入空氣帶來的熱、濕量或提高正壓風量的數值。
(a)外門瞬變傳熱得形成的冷負荷
計算方法同窗戶瞬變傳熱得形成的冷負荷。
(b)外門日射得熱形成的冷負荷
計算方法同窗戶日射得熱形成的冷負荷,但一層大門一般有遮陽。
(c)熱風侵入形成的冷負荷
由於外門開啟而滲入的空氣量G按下式計算:
G=nVmγw kg/h
式中 Vm——外門開啟一次(包括出入各一次)的空氣滲入量(m2/人次·h),按下表3—9選用;
n——每小時的人流量(人次/h);
γw——室外空氣比重(kg/m2)。
表3—9 Vm值(m2/人次·h)
每小時通過
的人數 普通門 帶門斗的門 轉門
單扇 一扇以上 單扇 一扇以上 單扇 一扇以上
100 3.0 4.75 2.50 3.50 0.80 1.00
100~700 3.0 4.75 2.50 3.50 0.70 0.90
700~1400 3.0 4.75 2.25 3.50 0.50 0.60
1400~2100 2.75 4.0 2.25 3.25 0.30 0.30
因室外空氣進入室內而獲得的熱量,可按下式計算:
Q=G·0.24(tw-tn) kcal/h
地面的冷負荷計算
舒適性空氣調節區,夏季可不計算通過地面傳熱形成的冷負荷。工藝性空氣調節區,有外牆時,宜計算距外牆2m范圍內的地面傳熱形成的冷負荷,地面冷計算採用地帶法(同採暖)。
內牆、內窗、樓板、地面的冷負荷
內牆、內窗、樓板等圍護結構,當鄰室為非空氣調節房間時,其室溫基數大於3℃時,鄰室溫度採用平均溫度,其冷負荷按下式計算:
Q=KF(twp+⊿tls-tn) W
式中 Q——內牆或樓板的冷負荷,W;
K——內牆或樓板的傳熱系數,W/m2·℃;
F——內牆或樓板的傳熱面積,m2;
tls——鄰室計算平均溫度與夏季空氣調節室外計算日平均溫度的差值,℃。
內牆、內窗、樓板等其鄰室為空氣調節房間時,其室溫基數小於3℃時,不計算。
室內得熱冷負荷計算
(a)電子設備的冷負荷
電子設備發熱量按下式計算:
Q=1000n1n2n3N W
式中 Q——電子設備散熱量,W;
N——電子設備的安裝功率,kW;
n1——安裝系數。電子設備設計軸功率與安裝功率之比,一般可取0.7~0.9;
n2——負荷功率。電子設備小時的平均實耗功率與設計軸功率之比,根據設備運轉的實際情況而定。
n3——同時使用系數。房間內電子設備同時使用的安裝功率與總功率之比。根據工藝過程的設備使用情況而定。
對於電子計算機,國外產品一般都給出設備發熱,可按其給出的數字計算。本次設計每台計算機Qs=150W。
(b)照明設備
照明設備散熱量屬於穩定得熱,一般得熱量是不隨時間變化的。
根據照明燈具的類型和安裝方式的不同,其得熱量為:
白熾燈 Q=1000N W
熒光燈 Q=1000 n1n2N W
式中 N——照明燈具所需功率,kW;
n1——鎮流器消耗功率系數,當明裝熒光燈的鎮流器裝在空調房間內時,取n1=1.2;當暗裝熒光燈鎮流器設在頂棚內時,可取n1=1.0;
n2——燈罩隔熱系數,當熒光燈罩上部有小孔(下部為玻璃板),可利用自然通風散熱與熒光燈頂棚內時,取n2=0.5~0.6;而熒光燈罩無通風孔者,則視頂棚內通風情況,n2=0.6~0.8。
(c)人體散熱
人體散熱與性別、年齡、衣著、勞動強度及周圍環境條件等多種因素有關。人體散發的潛熱量和對流熱直接形成瞬時冷負荷,而輻射散發的熱量將會形成滯後的冷負荷。實際計算中,人體散熱可以以成年男子為基礎,成以考慮了各類人員組成比例的系數,稱群集系數。對於不同功能的建築物中的各類人員(成年男子、女子、兒童等)不同的組成進行修正,下表給出了一些建築物中的群集系數,作為參考。於是人體散熱量為:
Q=qnn′ W
式中 q——不同室溫和勞動性質時成年男子散熱量,W;
n——室內全部人數;
n′——群集系數。
(d)食物散熱量形成冷負荷
計算餐廳負荷時,食物散熱量形成的顯熱冷負荷,可按每位就餐人員9W考慮。計算過程如下:
已確定餐廳人數為200人。則Q=9×200=1800W
(e) 電動設備 當工藝設備及其電動機都放在室內,設備冷負荷為
Q=1000n1n2n3N/η W 當只有工藝設備在室內,而電動機不在室內時,設備冷負荷為
Q=1000n1n2n3N W 當工藝設備不在室內,只有電動機放在室內時,設備冷負荷為
Q=1000n1n2n3(1-η)N/η W
N——電動設備的安裝功率,KW
η——電動機效率
n1——利用系數,是電動機最大實耗功率與安裝功率之比,一般可取0.7~0.9
n2——電動機負荷系數,定義為電動機每小時平均實耗功率與機器設計時最大實耗功率之比,對精密機床可取0.15~0.40,對普通機床可取0.5左右
n3——同時使用系數,定義為室內電動機同時使用的安裝功率與總安裝功率之比,一般取0.5~0.8 濕負荷計算
(a)人體散濕量
人體散濕量應同人體散熱量一樣考慮。計算過程如下:
查資料得,成年男子散熱散濕量為:顯熱61W/人,潛熱73W/人,109g/h·人;房間人數為20人。
Q=qnn′=109×20×0.77=0.00047kg/s
(b)水面散濕量
W=β(Pq·b-Pq)F kg/s
式中 Pq·b——相應於水表面溫度下的飽和空氣的水蒸汽分壓力,Pa;
Pq——空氣中水蒸汽分壓力Pa;
F——蒸發水槽表面積,m2;
β——蒸發系數,kg/(N·s),β按下式確定:
β=(α+0.00363v)10-5;
B——標准大氣壓力,其值為101325Pa;
B′——當地實際大氣壓力,Pa;
α——周圍空氣溫度為15~30℃,不同水溫下的擴散系數,kg/(N·s);
v——水面上周圍空氣流速,m/s。
表3—11 不同水溫下的擴散系數α
水溫(℃) <30 40 50 60 70 80 90 100
α kg/(N·s) 0.0043 0.0058 0.0069 0.0077 0.0088 0.0096 0.0106 0.0125
(c)食品的散濕量
餐廳的食品的散濕量可按就餐總人數每人10g/h考慮。
以207餐廳為例,計算過程如下:
已確定餐廳人數為200人。則Q=10×200=2000g/h=0.00056kg/s
熱負荷的計算和供熱基本相同 只是採用了平均溫度的計算方法

⑨ 空調負荷計算

常見空調負荷計算方式有:諧波反應法、冷負荷系數法和冷負荷指標估演算法。

諧波反應法:在負荷計算中,得熱量形成冷負荷的關鍵是得熱中輻射部分變成冷負荷的比例,應為對流部分直接變成了冷負荷,諧波反應中輻射擾熱量轉化為冷負荷的過程如下圖所示:



輻射擾熱量投到板壁上,相當於引起板壁表面空氣邊界層溫度升高,板壁吸熱後溫度升高會以對流的形式向房間放熱,所放出的熱量即為冷負荷。

冷負荷系數法:冷負荷系數法是建立在Z傳遞函數基礎上的一種簡化計算方法。該方法把得熱計算和負荷計算兩步合並成一步,通過冷負荷系數直接從各種擾量源求得分項逐時冷負荷。

1、冷負荷系數法確定空調房間各項冷負荷。

(1)維護結構瞬變傳熱形成的冷負荷;外牆和屋頂瞬變傳熱引起的冷負荷;內牆、樓板等室內維護結構傳熱形成的冷負荷。

(2)透過玻璃進入室內的日射得熱形成的冷負荷。

(3)室內熱源散熱形成的冷負荷。

照明散熱形成的冷負荷;人體散熱形成的冷負荷;ƒ設備和用具的散熱量引起的冷負荷;空調房間的夏季冷負荷,應按各項逐時冷負荷的綜合最大值確定。如果空調系統中新風直接送入房間處理(新風不承擔室內空氣負荷時),則空調房間冷負荷還應包括新風負荷。

(9)照明散熱冷負荷系數怎麼查擴展閱讀:

冷負荷指為了維持室內設定的溫度,在某一時刻必須由空調系統從房間帶走的熱量,或者某一時刻需要向房間供應的冷量。房間的得熱量是指通過維護結構進入房間的,以及房間內部散出的各種熱量。

它由兩部分組成:一是由於太陽輻射進入房間的熱量和室內外空氣溫差經維護結構傳人房間的熱量;另一部分是人體、照明、各種工藝設備和電器設備散入房間的熱量。根據性質的不同,房間得熱量可以分為潛熱和顯熱兩類,而顯熱又包括對流熱和輻射熱兩種成分。

空調系統依靠送風帶走室內的熱量,只能是對流熱。這就是負荷。而上述得熱量含有輻射成分不能被送風所吸收。這部分輻射通過被輻射的圍護結構的蓄熱一放熱效應才能轉化為對流成分。

這種轉化必然產生峰值的削減和時間的延遲,其結果使的得熱曲線變成負荷曲線時被延遲被削平。負荷峰值小於得熱峰值。也就是說得熱和負荷是兩個不同的概念,得熱含有輻射成分。

⑩ 空調的房間冷負荷怎麼計算

冷負荷的計算:

根據本工程的設計特點,故空調房間冷負荷包括以下幾個部分:①外圍護結構的瞬變傳熱(外牆,窗,屋頂,地面,玻璃幕牆);②窗的日射得熱;③人員散熱;④照明散熱和其他散熱。若鄰室為非空調房間,則需考慮內維護結構的傳熱問題。各部分計算方法具體介紹如下:

1. 內圍護結構冷負荷:

當鄰室為通風良好的非空調房間時,通過內牆和樓板的溫差傳熱而產生的冷負荷可按上式計算;當鄰室與空調區的夏季溫差大於3℃時應按下式計算通過空調房間隔牆、樓板、內窗等內圍護結構的溫差傳熱而產生的冷負荷。

式中:CL——內牆傳熱引起的逐時冷負荷,(W);

F ——內牆的面積,(㎡);

K——內牆的傳熱系數,(w/㎡·℃);

tls——鄰室計算平均溫度,(℃);

——鄰室計算平均溫度與夏季空氣調節室外計算溫度的差值,(℃)。

2. 外牆冷負荷:

根據已知外牆體的構造,查《空調冷負荷專刊》表3-1(外牆結構類型表)中查得本設計中此類外牆體做法屬於與Ⅲ型,k=0.7w/㎡·℃。再由表3-3(外牆冷負荷計算溫度表)查得Ⅲ型的逐時值。可按下式計算:

式中:CL——外牆牆傳熱引起的逐時冷負荷,(W);

F ——外牆的面積,(㎡);

K ——外牆的傳熱系數,(w/㎡·℃);

——外牆的冷負荷計算溫度的逐時值(℃);

tn ——夏季空氣調節室內計算溫度(℃)。

3. 屋頂瞬變傳熱引起的冷負荷:

根據已知屋面的構造,查《空調冷負荷專刊》表3-2(屋面結構類型表)中查得本設計中此類屋面做法Ⅳ型,k=0.45w/㎡·℃。再由表3-4(屋面冷負荷計算溫度表)查得Ⅳ型的逐時值。可按下式計算:

式中:CL——屋頂瞬變傳熱引起的逐時冷負荷(W);

F ——屋頂的面積(㎡);

K ——屋頂的傳熱系數(w/㎡·℃);

——屋頂的冷負荷計算溫度的逐時值(℃);

tn ——夏季空氣調節室內計算溫度(℃)。

4. 玻璃窗瞬變傳熱引起的冷負荷:

在室內外溫差作用下,玻璃窗瞬變傳熱引起的冷負荷的計算公式

式中:CL——玻璃窗瞬變傳熱引起的逐時冷負荷(W);

F——玻璃窗的面積(㎡);

K——玻璃窗的傳熱系數(w/㎡·℃);

——玻璃窗的冷負荷計算溫度的逐時值(℃);

tn ——夏季空氣調節室內計算溫度(℃)。

查《空調冷負荷專刊》P74表3-10(玻璃窗傳熱系數的修正值)可知本設計中修正值取1.2。由表3-11(玻璃窗冷負荷計算溫度tl'表)可查得窗玻璃的逐時冷負荷計算溫度tl值, 可計算出玻璃窗瞬變傳熱引起的逐時冷負荷。

5. 透過玻璃窗進入的日射得熱引起的冷負荷:

透過無外遮陽玻璃窗進入室內的日照得熱形成的冷負荷CL可按下式計算:

(2-7)

式中:CL——透過玻璃窗的日照的熱形成的逐時冷負荷,千卡/小時(kcal/h);

Cz——窗玻璃的綜合遮擋系數,無因次。

Cz=Cs×Cn 其中Cs為玻璃窗的遮擋系數,Cn為窗內遮陽設施的遮陽系數,由《空調技術冷負荷計算方法專刊》表2-2,由於每個窗戶均為雙層3mm厚普通玻璃,查得Cs=0.86,又知內遮陽為白布簾,查表2-3可知Cn=0.50,因而Cz = Cs×Cn= 0.86×0.50 =0.43。

F——窗玻璃的凈面積。查《空調冷負荷專刊》P7表2-4可知雙層鋼窗的有效面積系數為Ca=0.75,以得出窗玻璃凈面積F帶入式中F=×Ca ( Ca為有效面積系數)。

Dj.max——日熱照得熱因數的最大值,千卡/米2·小時 ;由於重慶市所處的緯度為30°,屬於30°緯度帶查《空調技術冷負荷計算方法專刊》表2—1得各個方向日熱照得熱因數的最大值Dj.max見下表;

朝向

緯度

S

SE

E

NE

N

NW

W

SW

300

149

322

463

357

99

357

463

322

又因杭州地處北緯27º30´以北,屬北區,各朝向值可由表2-6(北區有內遮陽玻璃窗冷負荷系數表)查得。綜合考慮本工程負荷計算的復雜,先計算各朝向單位面積透過玻璃窗進入的日射得熱引起逐時冷負荷如表所示。